Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Res Sq ; 2023 Apr 13.
Article in English | MEDLINE | ID: covidwho-2320633

ABSTRACT

Background The burst of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the global COVID-19 pandemic. But until today only limited numbers of drugs are discovered to treat COVID-19 patients. Even worse, the rapid mutations of SARS-CoV-2 compromise the effectiveness of existing vaccines and neutralizing antibodies due to the increased viral transmissibility and immune escape. CD147-spike protein, one of the entries of SRAR-CoV-2 into host cells, has been reported as a promising therapeutic target for developing drugs against COVID-19. Methods CRISPR-Cas9 induced gene knockout, western blotting, tet-off protein overexpression, ribonucleoprotein IP and RNA-IP were used to confirm the regulation of HuR on mRNA of CD147. Regulation of niclosamide on HuR nucleo-translocation was assessed by immunofluorescence staining of cell lines, IHC staining of tissue of mouse model and western blotting. Finally, the suppression of niclosamide on SARS-CoV-2 infection induced CD147 was evaluated by ACE2-expressing A549 cells and western blotting. Results We first discovered a novel regulation mechanism of CD147 via the RNA-binding protein HuR. We found that HuR regulates CD147 post-transcription by directly bound to its 3'-UTR. The loss of HuR reduced CD147 in multiple cell lines. Niclosamide inhibited CD147 function by blocking HuR cytoplasmic translocation and diminishing CD147 glycosylation. SARS-CoV-2 infection induced CD147 in ACE2-expressing A549 cells, which could be neutralized by niclosamide in a dose-dependent manner. Conclusion Together, our study reveals a novel regulation mechanism of CD147 and niclosamide can be repurposed as an effective COVID-19 drug by targeting the virus entry, CD147-spike protein.

2.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2305942

ABSTRACT

Feline infectious peritonitis (FIP), which is caused by feline infectious peritonitis virus (FIPV), is a fatal and immunologically mediated infectious disease among cats. At present, due to the atypical clinical symptoms and clinicopathological changes, the clinical diagnosis of FIP is still difficult. The gold standard method for the differential diagnosis of FIP is immunohistochemistry (IHC) which is time-consuming and requires specialized personnel and equipment. Therefore, a rapid and accurate clinical diagnostic method for FIPV infection is still urgently needed. In this study, based on the etiological investigation of FIPV in parts of southern China, we attempted to explore a new rapid and highly sensitive method for clinical diagnosis. The results of the etiological investigation showed that the N gene of the FIPV BS8 strain had the highest homology with other strains. Based on this, a specific FIPV BS8 N protein monoclonal antibody was successfully prepared by expression of the recombinant proteins, immunization of mice, fusion and selection of hybridoma cell lines, and screening and purification of monoclonal antibodies. Furthermore, we carried out a time-saving combination method including indirect immunofluorescence assay (IFA) and nested reverse transcription polymerase chain reaction (RT-nPCR) to examine FIP-suspected clinical samples. These results were 100% consistent with IHC. The results revealed that the combined method could be a rapid and accurate application in the diagnosis of suspected FIPV infection within 24 hours. In conclusion, the combination of IFA and RT-nPCR was shown to be a fast and reliable method for clinical FIPV diagnosis. This study will provide insight into the exploitation of FIPV N antibodies for the clinical diagnosis of FIP-suspected ascites samples.

3.
Adv Sci (Weinh) ; 10(6): e2205960, 2023 02.
Article in English | MEDLINE | ID: covidwho-2262047

ABSTRACT

Recent advances in flexible wearable devices have boosted the remarkable development of devices for human-machine interfaces, which are of great value to emerging cybernetics, robotics, and Metaverse systems. However, the effectiveness of existing approaches is limited by the quality of sensor data and classification models with high computational costs. Here, a novel gesture recognition system with triboelectric smart wristbands and an adaptive accelerated learning (AAL) model is proposed. The sensor array is well deployed according to the wrist anatomy and retrieves hand motions from a distance, exhibiting highly sensitive and high-quality sensing capabilities beyond existing methods. Importantly, the anatomical design leads to the close correspondence between the actions of dominant muscle/tendon groups and gestures, and the resulting distinctive features in sensor signals are very valuable for differentiating gestures with data from 7 sensors. The AAL model realizes a 97.56% identification accuracy in training 21 classes with only one-third operands of the original neural network. The applications of the system are further exploited in real-time somatosensory teleoperations with a low latency of <1 s, revealing a new possibility for endowing cyber-human interactions with disruptive innovation and immersive experience.


Subject(s)
Hand , Wearable Electronic Devices , Humans , Neural Networks, Computer , Gestures
4.
Evid Based Complement Alternat Med ; 2022: 5997562, 2022.
Article in English | MEDLINE | ID: covidwho-2194230

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune disorder. Zhonglun-5 (ZL), a traditional Mongolian medicine, exhibits an excellent clinical effect on RA; however, its molecular mechanism remains unclear. In this study, rat serum metabolomic analysis was performed to identify potential biomarkers for RA and investigate its treatment mechanism. A Dionex Ultimate 3000 ultrahigh-performance liquid chromatography system coupled with a Q-Exactive Focus Orbitrap mass spectrometer was used for metabonomics analysis. Bootstrap aggregation (bagging) classification algorithm was applied to process data from control (CG), model (MG), and treatment administration groups. The classification accuracy was 100.00% (6/6) in the decision tree model and 83.33% (5/6) in the K-nearest neighbor (KNN) model, accompanied by 18 training samples and 6 testing samples. Using volcanic map analysis, 24 biomarkers were identified between CG and MG, including those related to glycosphingolipid biosynthesis, arachidonic acid, fatty acids, amino acids, bile acids, vitamins, and sphingolipids. A set diagram of the heatmap and drug-biomarker network of potential biomarkers was constructed. After ZL administration, the levels of these biomarkers returned to normal, indicating that ZL had a therapeutic effect in rats with RA. This study established a solid theoretical foundation to promote further research on the clinical applicability of ZL.

5.
Front Med (Lausanne) ; 8: 637747, 2021.
Article in English | MEDLINE | ID: covidwho-1346406

ABSTRACT

Background: Different positive end-expiratory pressure (PEEP) strategies are available for subjects with coronavirus disease 2019 (COVID-19)-induced acute respiratory distress syndrome (ARDS) requiring invasive mechanical ventilation. We aimed to evaluate three conventional PEEP strategies on their effects on respiratory mechanics, gas exchanges, and hemodynamics. Methods: This is a prospective, physiologic, multicenter study conducted in China. We recruited 20 intubated subjects with ARDS and confirmed COVID-19. We first set PEEP by the ARDSnet low PEEP-fraction of inspired oxygen (FIO2) table. After a recruitment maneuver, PEEP was set at 15, 10, and 5 cm H2O for 10 min, respectively. Among these three PEEP levels, best-compliance PEEP was the one providing the highest respiratory system compliance; best-oxygenation PEEP was the one providing the highest PaO2 (partial pressure of arterial oxygen)/FIO2. Results: At each PEEP level, we assessed respiratory mechanics, arterial blood gas, and hemodynamics. Among three PEEP levels, plateau pressure, driving pressure, mechanical power, and blood pressure improved with lower PEEP. The ARDSnet low PEEP-FIO2 table and the best-oxygenation strategies provided higher PEEP than the best-compliance strategy (11 ± 6 cm H2O vs. 11 ± 3 cm H2O vs. 6 ± 2 cm H2O, p = 0.001), leading to higher plateau pressure, driving pressure, and mechanical power. The three PEEP strategies were not significantly different in gas exchange. The subgroup analysis showed that three PEEP strategies generated different effects in subjects with moderate or severe ARDS (n = 12) but not in subjects with mild ARDS (n = 8). Conclusions: In our cohort with COVID-19-induced ARDS, the ARDSnet low PEEP/FIO2 table and the best-oxygenation strategies led to higher PEEP and potentially higher risk of ventilator-induced lung injury than the best-compliance strategy. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04359251.

6.
J Affect Disord ; 294: 128-136, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1317696

ABSTRACT

BACKGROUND: We aimed to explore the risk profiles attributable to psychosocial and behavioural problems during the coronavirus disease 2019 pandemic. To this end, we created a risk-prediction nomogram model. METHODS: A national multicentre study was conducted through an online questionnaire involving 12,186 children (6-11 years old) and adolescents (12-16 years old). Respondents' psychosocial and behavioural functioning were assessed using the Achenbach Child Behaviour Checklist (CBCL). Data were analysed using STATA software and R-language. RESULTS: The positive detection rate of psychological problems within Wuhan was greater than that outside Wuhan for schizoid (P = 0.005), and depression (P = 0.030) in children, and for somatic complaints (P = 0.048), immaturity (P = 0.023), and delinquent behaviour (P = 0.046) in adolescents. After graded multivariable adjustment, seven factors associated with psychological problems in children and adolescents outside Wuhan were parent-child conflict (odds ratio (OR): 4.94, 95% confidence interval (95% CI): 4.27-5.72), sleep problems (OR: 4.05, 95% CI: 3.77-4.36), online study time (OR: 0.41, 95% CI: 0.37-0.47), physical activity time (OR: 0.510, 95% CI: 0.44-0.59), number of close friends (OR: 0.51, 95% CI: 0.44-0.6), time spent playing videogames (OR: 2.26, 95% CI: 1.90-2.69) and eating disorders (OR: 2.71, 95% CI: 2.35-3.11) (all P < 0.001). Contrastingly, within Wuhan, only the first four factors, namely, parent-child conflict (5.95, 2.82-12.57), sleep problems (4.47, 3.06-6.54), online study time (0.37, 0.22-0.64), and physical activity time (0.42, 0.22-0.80) were identified (all P < 0.01). Accordingly, nomogram models were created with significant attributes and had decent prediction performance with C-indexes over 80%. LIMITATION: A cross-sectional study and self-reported measures. CONCLUSIONS: Besides the four significant risk factors within and outside Wuhan, the three additional factors outside Wuhan deserve special attention. The prediction nomogram models constructed in this study have important clinical and public health implications for psychosocial and behavioural assessment.


Subject(s)
COVID-19 , Problem Behavior , Adolescent , Child , Cross-Sectional Studies , Humans , Nomograms , Pandemics , Risk Factors , SARS-CoV-2
7.
Transl Psychiatry ; 11(1): 342, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1258580

ABSTRACT

This study aims to explore the psychosocial and behavioral problems of children and adolescents in the early stage of reopening schools. In this national cross-sectional study, a total of 11072 students from China were naturally divided into two groups based on their schooling status: reopened schools (RS) and home schooling (HS) group. The psychosocial and behavioral functioning were measured by Achenbach Child Behaviour Checklist (CBCL) and compared in these two groups. Multivariable logistic regression analyses were conducted to explore the independent predictors associated with the psychosocial and behavioral problems. Our results showed that the students in the RS group had more adverse behaviors than that of HS group. The RS group had the higher rates of parent-offspring conflict, prolonged homework time, increased sedentary time and sleep problems (all p < 0.001). When separate analyses were conducted in boys and girls, the RS group had the higher scores for (1) overall behavioral problems (p = 0.02 and p = 0.01), internalizing (p = 0.02 and p = 0.02) and externalizing (p = 0.02 and p = 0.004) behaviors in the 6-11 age group; (2) externalizing (p = 0.049 and p = 0.006) behaviors in the 12-16 age group. Multivariable regression showed parent-offspring conflict and increased sedentary time were the most common risk factors, while physical activity and number of close friends were protective factors for behavior problems in RS students (p < 0.01 or 0.05). The present study revealed that students' psychosocial and behavioral problems increased in the early stage of schools reopened unexpectedly. These findings suggest that close attention must be paid and holistic strategies employed in the school reopening process of post-COVID-19 period.


Subject(s)
COVID-19 , Problem Behavior , Adolescent , Child , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Pandemics , SARS-CoV-2 , Schools
8.
Geophys Res Lett ; 48(2): 2020GL091611, 2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1053989

ABSTRACT

Air pollution in megacities represents one of the greatest environmental challenges. Our observed results show that the dramatic NOx decrease (77%) led to significant O3 increases (a factor of 2) during the COVID-19 lockdown in megacity Hangzhou, China. Model simulations further demonstrate large increases of daytime OH and HO2 radicals and nighttime NO3 radical, which can promote the gas-phase reaction and nocturnal multiphase chemistry. Therefore, enhanced NO3 - and SO4 2- formation was observed during the COVID-19 lockdown because of the enhanced oxidizing capacity. The PM2.5 decrease was only partially offset by enhanced aerosol formation with its reduction reaching 50%. In particular, NO3 - decreased largely by 68%. PM2.5 chemical analysis reveals that vehicular emissions mainly contributed to PM2.5 under normal conditions in Hangzhou. Whereas, stationary sources dominated the residual PM2.5 during the COVID-19 lockdown. This study provides evidence that large reductions in vehicular emissions can effectively mitigate air pollution in megacities.

9.
PLoS One ; 15(11): e0242535, 2020.
Article in English | MEDLINE | ID: covidwho-930646

ABSTRACT

A newly emerged coronavirus (COVID-19) seriously threatens human life and health worldwide. In coping and fighting against COVID-19, the most critical step is to effectively screen and diagnose infected patients. Among them, chest X-ray imaging technology is a valuable imaging diagnosis method. The use of computer-aided diagnosis to screen X-ray images of COVID-19 cases can provide experts with auxiliary diagnosis suggestions, which can reduce the burden of experts to a certain extent. In this study, we first used conventional transfer learning methods, using five pre-trained deep learning models, which the Xception model showed a relatively ideal effect, and the diagnostic accuracy reached 96.75%. In order to further improve the diagnostic accuracy, we propose an efficient diagnostic method that uses a combination of deep features and machine learning classification. It implements an end-to-end diagnostic model. The proposed method was tested on two datasets and performed exceptionally well on both of them. We first evaluated the model on 1102 chest X-ray images. The experimental results show that the diagnostic accuracy of Xception + SVM is as high as 99.33%. Compared with the baseline Xception model, the diagnostic accuracy is improved by 2.58%. The sensitivity, specificity and AUC of this model reached 99.27%, 99.38% and 99.32%, respectively. To further illustrate the robustness of our method, we also tested our proposed model on another dataset. Finally also achieved good results. Compared with related research, our proposed method has higher classification accuracy and efficient diagnostic performance. Overall, the proposed method substantially advances the current radiology based methodology, it can be very helpful tool for clinical practitioners and radiologists to aid them in diagnosis and follow-up of COVID-19 cases.


Subject(s)
Coronavirus Infections/diagnostic imaging , Deep Learning , Pneumonia, Viral/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed , Betacoronavirus , COVID-19 , Humans , Pandemics , SARS-CoV-2 , Thorax/pathology , Thorax/ultrastructure
10.
Geophys Res Lett ; 47(23): e2020GL090444, 2020 Dec 16.
Article in English | MEDLINE | ID: covidwho-926044

ABSTRACT

Black carbon (BC) not only warms the atmosphere but also affects human health. The nationwide lockdown due to the Coronavirus Disease 2019 (COVID-19) pandemic led to a major reduction in human activity during the past 30 years. Here, the concentration of BC in the urban, urban-industry, suburb, and rural areas of a megacity Hangzhou were monitored using a multiwavelength Aethalometer to estimate the impact of the COVID-19 lockdown on BC emissions. The citywide BC decreased by 44% from 2.30 to 1.29 µg/m3 following the COVID-19 lockdown period. The source apportionment based on the Aethalometer model shows that vehicle emission reduction responded to BC decline in the urban area and biomass burning in rural areas around the megacity had a regional contribution of BC. We highlight that the emission controls of vehicles in urban areas and biomass burning in rural areas should be more efficient in reducing BC in the megacity Hangzhou.

11.
Geriatr Orthop Surg Rehabil ; 11: 2151459320969380, 2020.
Article in English | MEDLINE | ID: covidwho-901800

ABSTRACT

INTRODUCTION: The ongoing outbreak of novel coronavirus disease 2019 (COVID-19) is a worldwide problem. Although diagnosing COVID-19 in fracture patients is important for selecting treatment, diagnosing early asymptomatic COVID-19 is difficult. We describe herein a rare case of femoral intertrochanteric fracture concomitant with early asymptomatic novel COVID-19. CASE PRESENTATION: An 87-year-old Japanese woman was transferred to our emergency room with a right hip pain after she fell. She had no fever, fatigue, or respiratory symptoms on admission and within the 14 days before presenting to our hospital, and no specific shadow was detected in chest X-ray. However, chest computed tomography (CT) was performed considering COVID-19 pandemic, and showed ground-glass opacities with consolidation in the dorsal segment of the right lower lung field. Then, qualitative real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) was carried out and turned out to be positive. She was diagnosed right femoral intertrochanteric fracture with concomitant COVID-19 infection. Conservative treatment was applied to the fracture due to infection. After admission, fever and oxygen demand occurred but she recovered from COVID-19. Throughout the treatment period, no cross-infection from the patient was identified in our hospital. CONCLUSION: This case highlights the importance of considering chest CT as an effective screening method for infection on hospital admission in COVID-19-affected areas, especially in trauma patients with early asymptomatic novel COVID-19.

13.
Trials ; 21(1): 738, 2020 Aug 24.
Article in English | MEDLINE | ID: covidwho-727297

ABSTRACT

OBJECTIVES: This study aims to determine the protection provided by Shenfu injection (a traditional Chinese medicine) against development of organ dysfunction in critically ill patients with coronavirus disease 2019 (COVID-19). TRIAL DESIGN: This study is a multicenter, randomized, controlled, open-label, two-arm ratio 1:1, parallel group clinical trial. PARTICIPANTS: The patients, who are aged from 18 to 75 years old, with a confirmed or suspected diagnosis of severe or critical COVID-19, will be consecutively recruited in the study, according to the guideline on diagnosis and treatment of COVID-19 (the 7th version) issued by National Health Commission of the People's Republic of China. Exclusion criteria include pregnant and breastfeeding women, atopy or allergies to Shenfu Injection (SFI), severe underlying disease (malignant tumor with multiple metastases, uncontrolled hemopathy, cachexia, severe malnutrition, HIV), active bleeding, obstructive pneumonia caused by lung tumor, severe pulmonary interstitial fibrosis, alveolar proteinosis and allergic alveolitis, continuous use of immunosuppressive drugs in last 6 months, organ transplantation, expected death within 48 hours, the patients considered unsuitable for this study by researchers. The study is conducted in 11 ICUs of designated hospitals for COVID-19, located in 5 cities of China. INTERVENTION AND COMPARATOR: The enrolled patients will randomly receive 100 ml SFI (study group) or identical volume of saline (control group) twice a day for seven consecutive days. Patients in the both groups will be given usual care and the necessary supportive therapies as recommended by the latest edition of the management guidelines for COVID-19 (the 7th version so far). MAIN OUTCOMES: The primary endpoint is a composite of newly developed or exacerbated organ dysfunction. This is defined as an increase in the sequential organ failure assessment (SOFA) score of two or more, indicating sepsis and involvement of at least one organ. The SOFA score will be measured for the 14 days after enrolment from the baseline (the score at randomization). The secondary endpoints are shown below: • SOFA score in total • Pneumonia severity index score • Dosage of vasoactive drugs • Ventilation free days within 28 days • Length of stay in intensive care unit • Total hospital costs to treat the patient • 28-day mortality • The incidence of adverse drug events related to SFI RANDOMISATION: The block randomization codes were generated by SAS V.9.1 for allocation of participants in this study. The ratio of random distribution is 1:1. The sealed envelope method is used for allocation concealment. BLINDING (MASKING): The patients and statistical personnel analyzing study data are both blinded. The blinding of group assignment is not adopted for the medical staff. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): This study is expected to recruit 300 patients with COVID-19, (150 in each group). TRIAL STATUS: Protocol version 2.0, February 15, 2020. Patient recruitment started on February 25, and will end on August 31, 2020. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR2000030043. Registered February 21, 2020, http://www.chictr.org.cn/showprojen.aspx?proj=49866 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Subject(s)
Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Organ Dysfunction Scores , Pneumonia, Viral/drug therapy , Betacoronavirus , COVID-19 , China , Coronavirus Infections/physiopathology , Critical Illness , Humans , Pandemics , Pneumonia, Viral/physiopathology , SARS-CoV-2 , COVID-19 Drug Treatment
14.
Sci Total Environ ; 751: 141820, 2021 Jan 10.
Article in English | MEDLINE | ID: covidwho-723550

ABSTRACT

In recent decades, air pollution has become an important environmental problem in the megacities of eastern China. How to control air pollution in megacities is still a challenging issue because of the complex pollutant sources, atmospheric chemistry, and meteorology. There is substantial uncertainty in accurately identifying the contributions of transport and local emissions to the air quality in megacities. The COVID-19 outbreak has prompted a nationwide public lockdown period and provides a valuable opportunity for understanding the sources and factors of air pollutants. The three-month period of continuous field observations for aerosol particles and gaseous pollutants, which extended from January 2020 to March 2020, covered urban, urban-industry, and suburban areas in the typical megacity of Hangzhou in the Yangtze River Delta in eastern China. In general, the concentrations of PM2.5-10, PM2.5, NOx, SO2, and CO reduced 58%, 47%, 83%, 11% and 30%, respectively, in the megacity during the COVID-Lock period. The reduction proportions of PM2.5 and CO were generally higher in urban and urban-industry areas than those in suburban areas. NOx exhibited the greatest reduction (>80%) among all the air pollutants, and the reduction was similar in the urban, urban-industry, and suburban areas. O3 increased 102%-125% during the COVID-Lock period. The daytime elevation of the planetary boundary layer height can reduce 30% of the PM10, PM2.5, NOx and CO concentrations on the ground in Hangzhou. During the long-range transport events, air pollutants on the regional scale likely contribute 40%-90% of the fine particles in the Hangzhou urban area. The findings highlight the future control and model forecasting of air pollutants in Hangzhou and similar megacities in eastern China.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Betacoronavirus , COVID-19 , China/epidemiology , Environmental Monitoring , Humans , Particulate Matter/analysis , Rivers , SARS-CoV-2
15.
J Coll Physicians Surg Pak ; 30(6): 53-55, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-690306

ABSTRACT

The aim of this study was to investigate the chest CT findings of coronavirus disease 2019 (COVID-19) from January to February 2020. CT features of six cases, confirmed by reverse transcription polymerase chain reaction (RT-PCR) with COVID-19 disease, were evaluated. Of the six patients, one patient had normal scan. One patient had ground glass opacity only, while the rest four patients mainly had ground glass opacity accompanied by consolidation. Moreover, air bronchogram, crazy paving and reversed halo sign could be seen in 5, 3 and 1 patient, respectively. Lesions in three patients were only located in the peripheral area, while of two patients, were mainly located in the peripheral area with involvement of the center along with bronchovascular bundles. While one patient had enlarged mediastinal nodes, no one had pleural effusion. CT can be used as the first choice for early diagnosis of COVID-19 pneumonia. Key Words: Pneumonia, Lung CT scan, COVID-19, Coronavirus infection.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus/isolation & purification , Lung/diagnostic imaging , Pneumonia, Viral/diagnosis , Thorax/diagnostic imaging , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Humans , Pandemics , Pneumonia, Viral/complications , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Tomography, X-Ray Computed
16.
Ann Transl Med ; 8(10): 642, 2020 May.
Article in English | MEDLINE | ID: covidwho-609917

ABSTRACT

BACKGROUND: Since early December 2019, the 2019 novel coronavirus (COVID-19) has emerged in Wuhan and spread rapidly in China. We aimed to describe the clinical characteristics of hospitalized patients with confirmed COVID-19 infection in Shaoxing, and provide an insight into the treatment of COVID-19 across China and elsewhere. METHODS: In this retrospective, single-center, study, we enrolled 16 patients with laboratory-confirmed COVID-19 admitted to the Affiliated Hospital of Shaoxing University between February 24 and January 25, 2020. Epidemiological, demographic, clinical, laboratory, radiological feature, and treatment data were all collected. Outcomes were followed up until March 16, 2020. RESULTS: Among the 16 patients with COVID-19 infection, 11 patients (68.8%) had traveled or lived in Wuhan or surrounding areas, and 2 (12.5%) patients had exposure to patients with confirmed COVID-19 infection. The average age of the patients was 44.1 (16.5) years, and there were 10 women (62.5%) and 6 men (37.5%). More than half had chronic diseases [9 (56.3%)]. The most common symptoms at onset of COVID-19 infection were fever [12 (75%)] and cough [8 (50%)]; 11 (68.8%) patients had lymphopenia, and 12 (75%) had elevated C-reactive protein. On admission, abnormalities in computed tomography (CT) or chest X-ray images were revealed among all patients, and 11 (68.8%) of 16 patients had bilateral involvement. All patients were given psychological counseling, 15 (93.8%) patients were administered with antiviral therapy, 8 (50%) received empirical antibiotic treatment, and 5 (31.3%) patients were given systematic corticosteroids. Complications included acute respiratory distress syndrome (ARDS) requiring non-invasive mechanical ventilation [1 (6.3%)], acute respiratory injury [4 (25%)], acute renal injury [1 (6.3%)], septic shock [1 (6.3%)], liver dysfunction [5 (31.3%)], electrolyte disturbance [8 (50.0%)], and hospital-acquired pneumonia [3 (18.8%)]. None of the 16 patients died of COVID-19 pneumonia. CONCLUSIONS: Compared with the symptoms of the initial patients with COVID-19 infection in Wuhan, the symptoms of the patients from Shaoxing city were relatively mild. Currently, there is no effective drug treatment or vaccine for COVID-19, and psychological counseling cannot be ignored. Drugs and vaccines against COVID-19 infection need to be developed as soon as possible.

SELECTION OF CITATIONS
SEARCH DETAIL